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Abstract

Diabetes is a disorder of metabolism that has affected
18.2 million people in the United States. In recent years,
researchers have identified many genes that play important
roles in the onset, development and progression of diabetes.
Identification of these diabetes genes offers better under-
standing of the molecular mechanisms underlying patho-
genesis, which is essential for developing preventative and
therapeutic methods. In this paper, we propose an innova-
tive approach, fuzzy membership test (FM-test), based on
fuzzy set theory to identify diabetes associated genes from
microarray gene expression profiles. A new concept of FM
d-value is defined to quantify the divergence of two sets of
values. Experiments were conducted to study the distribu-
tion of d-values and the relationship between the d-value
and the significance level of p-value. We applied FM-test to
a gene expression dataset obtained from insulin-sensitive
and insulin-resistant people and identified ten significant
genes. Six of the ten have been confirmed to be associ-
ated with diabetes in the literature and one has been sug-
gested by other researchers. The remaining three genes,
������,������ and ������, are suggested as potential
diabetes genes for further biological investigation.

1 Introduction

Diabetes is a group of diseases characterized by high lev-
els of blood glucose resulting from defects in insulin pro-
duction, insulin action, or both. There are 18.2 million peo-
ple in the United States, or 6.3% of the population, who
have diabetes. Diabetes is also one of the leading causes
of death in U.S. In 2000, it contributed to 213,062 deaths.
The risk for death among people with diabetes is about 2
times of that among people without diabetes [1]. The direct
and indirect cost of diabetes in the United States for 2002
totaled $132 billion, among which, $92 billion are direct
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medical costs and $40 billion are indirect costs of disabil-
ity, work loss, premature mortality etc[1].

Microarray techniques have revolutionalized genomic
research by making it possible to monitor the expression of
thousands of genes in parallel. As the amount of microarray
data being produced in an exponential rate, there is a great
demand for efficient and effective expression data analysis
tools. The gene expression profile of a cell determines its
phenotype and responses to the environment. These re-
sponses include its responses towards environmental fac-
tors, drugs and therapies. Gene expression patterns can be
determined by measuring the quantity of the end product,
protein, or the mRNA template used to synthesize the pro-
tein. Comparison of gene expression profiling in diabetes
patients versus the normal counterpart people will enhance
our understanding of the disease and identify leads for ther-
apeutic intervention. Several important breakthroughs and
progress in the gene expression profiling of diabetes have
been made [10, 14, 13]. Patterns of gene expression have
been proposed and associated with diabetes [15, 16]. More
interestingly, researchers have identified many genes that
play important roles in the onset, development, and progres-
sion of diabetes. Identification of these diabetes genes of-
fers a route to better understanding of the molecular mecha-
nisms underlying pathogenesis, a necessary prerequisite for
the rational development of improved preventative and ther-
apeutic methods.

One effective approach of identifying genes that are as-
sociated with diabetes is to measure the divergence of two
sets of values of gene expression, one from a group of peo-
ple that are insulin resistant (IR), the other from a group
that are insulin sensitive (IS) [17]. A motivating example
is shown in Table 1, which records the microarray gene ex-
pression values of five genes for two groups of people: five
insulin-sensitive humans and five insulin-resistant humans.
In order to identify the genes that are associated with dia-
betes, one needs to determine for each gene whether or not
the two sets of expression values are significantly different
from each other. One popular method is t-test [11], which
uses the difference of the means of the two sets to measure
the divergence. In Table 1, the first four genes are iden-



Table 1. The microarray gene expression values for five genes under two conditions
Gene FM-test t-test rank sum

ID IR IS d-value p-value p-value p-value
1 750 559 649 685 636 310 359 135 97 178 0.999 0.001 0.008 0.00
2 123 142 11 406 220 305 398 707 905 688 0.756 0.012 0.011 0.031
3 246 213 232 134 67 86 79 77 94 61 0.725 0.017 0.021 0.098
4 200 191 220 83 197 49 81 116 111 135 0.708 0.019 0.024 0.058
5 598 424 695 451 141 342 260 266 229 234 0.674 0.025 0.077 0.152

tified by t-test as significant genes (with p-value � ����).
However, t-test cannot distinguish two divergent sets with
close means and is very sensitive to extreme values. As a
result, t-test fails to recognize genes 5 as significant genes
although their expression values under the two conditions
are significantly different from each other. Another popu-
lar method is Wilcoxon rank sum test [11], which uses the
sum of ranks for one of the sets to measure the divergence.
In Table 1, the first two genes are identified by Wilcoxon
rank sum test as significant genes (with p-value � ����).
Although Wilcoxon rank sum test overcomes the limitation
of t-test on the sensitivity to extreme values, it is not sensi-
tive to absolute values. As a result, Wilcoxon rank sum test
fails to identify gene 3, 4 and 5 as significant genes although
the two sets for these three genes are significantly different
from each other.

In this paper, based on the fuzzy set theory [8], we pro-
pose an innovative approach that overcomes the above lim-
itations of t-test and rank sum test. The basic idea is to con-
sider the two sets of values as samples from two different
fuzzy sets. We examine each element in one fuzzy set for
its membership value with the other fuzzy set. Each such
membership value is considered as a bond between the two
sets. An aggregation of the values of all elements represent
the overall bond between the two sets. By standardizing the
aggregation and then subtracting the result from 1, we mea-
sure the divergence of the original two sets. The weaker this
overall bond is, the more divergent the two sets are, and the
more significant the corresponding gene is.

The main contributions of this paper are:

1. We propose an innovative approach based on the fuzzy
set theory, the fuzzy membership test (FM-test), which
quantifies the divergence of two sets directly.

2. We validated FM-test on synthetic datasets and show
that it is effective and robust.

3. We apply FM-test to a real diabetes gene expression
dataset and identified 10 significant genes. Six among
these ten have been known to be associated with dia-
betes, one is suggested by other researchers as poten-
tial diabetes genes, and we suggest the remaining three
genes for further biological investigation.

The rest of the paper is organized as follows. Section 2
briefly reviews t-test and Wilcoxon rank sum test and their
limitations. Section 3 presents our fuzzy-set-theory-based
method, FM-test. Section 4 provides our experimental re-
sults on both synthetic datasets and a real dataset of gene
expression profiles. In the end, Section 5 concludes the pa-
per and points out some potential future work.

2 Related work

Many genes have been identified to be important in the
onset, development, and progression of diabetes. One effec-
tive approach of identifying genes that are associated with
diabetes is to measure the divergence of two sets of val-
ues of gene expression, each from a group of people with
a particular condition [17]. Two most popular methods to
measure the divergence of two sets of values are t-test [11]
and Wilcoxon rank sum test [11],

The statistical method t-test assesses whether the means
of two groups are statistically different from each other.
Given two sets �� and ��, the t-value is calculated as
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where �� and 	� are the sample mean and standard devia-
tion of �, respectively.

The limitation of t-test is that it cannot distinguish two
sets with close means even though the two sets are signifi-
cantly different from each other. Another limitation of t-test
is that it is very sensitive to extreme values.

Another popular statistical method is Wilcoxon rank sum
test, which can be used to test the null hypothesis that two
sets �� and �� have the same distribution. We first merge
the data from these two sets and rank the values from the
lowest to the highest with all sequences of ties being as-
signed an average rank. The Wilcoxon test statistic 
 is
the sum of the ranks from set ��. Assuming that the two
sets have the same continuous distribution (and no ties oc-
cur), then 
 has a mean and standard deviation given by

� �
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�
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where � �� �� � and � �� �� �.
We test the null hypothesis 
�: no difference in distribu-

tions. A one-sided alternative is 
�: �� yields lower mea-
surements. We use this alternative if we expect or see that

 is unusually lower than its expected value �. In this
case, the p-value is given by a normal approximation. We
let � � �	�� 	
 and compute the left-tail ��	� � 
 

(using continuity correction if 
 is an integer).

If we expect or see that 
 is much higher than its ex-
pected value, then we should use the alternative 
�: first
�� yields higher measurements. In this case, the p-value
is given by the right-tail ��	� � 
 
. If the two sums of
ranks from each set are close, then we could use a two-sided
alternative 
�: there is a difference in distributions. In this
case, the p-value is given by twice the smallest tail value
���	� �
 
 if 
 � � , or ���	� �
 
 if 
 � �.

Although rank sum test overcomes the limitation of t-
test on sensitivity on extreme values, it is not sensitive to
absolute values. This might be advantageous to some appli-
cations but not to others.

3 Methodology

In this section, based on the fuzzy set theory [8], we
present our innovative approach, the fuzzy-set-theory-based
method test (FM-test), to quantify the divergence of two sets
of values directly and robustly.

Let �� and �� be two sets of values of a particular fea-
ture for two groups of samples under two different condi-
tions. The basic idea is to consider the two sets of values
as samples from two different fuzzy sets. We examine the
membership value of each element with respect to the other
fuzzy set. By calculating the average of membership val-
ues, we measure the divergence of the original two sets. In
particular, we perform the following steps:

1. Compute the sample mean and standard deviation of
�� and of �� respectively.

2. Characterize �� and �� as two fuzzy sets ��� and
��� whose fuzzy membership functions, ����	�

and ����	�
, are defined with the sample means and
standard deviations. The fuzzy membership function
����	�
 	� � �� �
 maps each value � to a fuzzy mem-
bership value that reflects the degree of � belonging to
��� 	� � �� �
.

3. Using the two fuzzy membership functions, ����	�

and ����	�
, quantify the convergence degree of two
sets.

4. Define the divergence degree (FM d-value) between
the two sets based on the convergence degree.

The details of each step is elaborated in the sequel.
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The sample mean �� of �� is calculated as
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where �� is the number of elements in ��, and the sample
standard deviation 	� of �� is calculated as
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For gene 5 in Table 1, we have �� � �����, 	� �
������, �� � �����, and 	� � �����. We then charac-
terize set �� by a fuzzy set ��� whose fuzzy membership
function is defined as

����	�
 � ��������
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The function ����	�
 maps each value x in �� to a fuzzy
membership value to quantify the degree that x belongs to
���. A value equal to the mean has a membership value of
1 and belongs to fuzzy set ��� to a full degree; a value that
deviates from the mean has a smaller membership value and
belongs to ��� to a smaller degree. The further the value
deviates from the mean, the smaller the fuzzy membership
value. Similarly, the fuzzy membership function for � � is
defined as

����	�
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where �� and 	� are the mean and standard deviation of ��

respectively.
For gene 5 in Table 1, we have ����	�
 �

��������
���	�����
	 and ����	�
 � ��������
���	��
�
�.
With these two fuzzy membership functions, the fuzzy
membership values for each element with respect to the two
sets can be calculated. For example, ����	���
 � ���� and
����	���
 � �������.

��� ��� ������	� �	
���� ���
	�


Since the fuzzy membership functions can overlap, one
element can belong to more than one fuzzy set with a re-
spective degree for each. For an element in ��, we measure
the degree that it belongs to ��� by applying its value to
���� . Similarly we can apply its value to ���� to measure
the degree that it belongs to ���. The idea of FM-test is to



consider the membership value of an element in �� with re-
spect to �� as one bond between �� and ��, and vice versa,
then the aggregation of all these bonds reflects the overall
bond between these two sets. The weaker this overall bond
is, the more divergent these two sets are. The strength of
the overall bond between two sets is quantified by their c-
value, which aggregates the mutual membership values of
elements in �� and �� and is defined as follows.

Definition 3.1 (FM c-value) Given two sets �� and ��, the
convergence degree between �� and �� in FM-test is de-
fined as
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Now we define the divergence value in FM-test (FM d-
value) as follows.

Definition 3.2 (FM d-value) Given two sets �� and��, the
FM d-value between �� and �� is defined as

����� ��� � �� ����� ��� (9)

�

For gene 5 in Table 1, �	��� ��
 � ��
��, thus the di-
vergence value is � � �	��� ��
 � �����. We calculated
all the p-values for the five genes in Table 1 for the three
methods. One interesting observation is that, while both t-
test and Wilcoxon rank sum test fail to recognize gene 5 as
a significant gene since their p-values are greater than 0.05,
our FM-test identifies gene 5 as a significant gene with a
p-value of 0.025. The reason of the failure of t-test and
Wilcoxon rank sum test is due to their sensitivity to the ex-
treme value 141 in the first set of the gene.

Given a calculated FM d-value � for two sets �� and
��, to interpret � in terms of “significantly divergent” or
not, we need to know the cutoff value Æ of �, so that when
� � Æ, the two sets are interpreted as significantly diver-
gent. In the context of FM-test, we like to test the follow-
ing null hypothesis 
�: �� and �� originate from the same
distribution. Then the p-value is defined as the probability
���	�	��� ��
 � � � �� and �� were randomly sampled
from the same distribution�. As a convention of statistical
analysis, if �� ����� � ����, then it is a strong evidence to
reject the null hypothesis, and accepts that the two sets are
significantly divergent, while the p-value reflects the signif-
icance. It has been very common to use Monte Carlo proce-
dures to calculate the empirical p-value which approximates
the exact p-value without relying on asymptotic distribu-
tional theory or on exhaustive enumeration. Davison and
Hinkley [5] present the formula for obtaining an empirical

p-value as 	���
 	���
, where � is the number of sam-
ples in the data set, and � is the number of those samples
which produce the statistical value greater than or equal to
the specified value.

We perform the following steps to calculate the p-value
of two sets �� and �� with their FM d-value�: (1) Estimate
the distribution that �� and �� are drawn from a normal dis-
tribution �	�� 	
, where � and 	 are estimated using the
sample mean and standard deviation of �� 	 ��; (2) Ran-
domly draw � pairs of sets from �	�� 	
, then calculate
the FM d-value for each pair; (3) Calculate the empirical
p-value as 	���
 	� ��
, where � is the number of pairs
whose FM d-values are equal or greater than �. The cutoff
FM d-value we obtain in this way is introduced in the next
section.

4 Experimental Results and Discussion

To validate our approach, first, we investigated the distri-
bution of FM d-value on a set of synthetic datasets. Second,
we conducted experiments on a synthetic dataset to study
the relationship between FM-test d-value and its empirical
p-value. Third, on another synthetic dataset, we studied the
relationship between FM d-value and the mean difference
of distributions. Finally we conducted FM-test on a real
microarray dataset of diabetes gene expressions to identify
genes that are related to diabetes and insulin metabolism.

��� ��	 ���������
� ���
����
��
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Suppose two sets �� and �� are randomly drawn from
the same normal distribution, what is the probability distri-
bution of FM d-value? To answer this question, we con-
ducted the following simulation:

 Normal distribution

generate

Set X = { x1, ... xm} Set Y= { y1, ... yn}

generate

d-value between X and Y

calculate

Normal distribution

generate

Set X = {x 1, ...x m} Set Y= { y1, ... yn}

generate

d-value between X and Y

calculate

Normal distribution

(a) (b)

Figure 1. Random generation of d-value from
normal distribution

1. We generated � = 64000 pairs of sets of values, with
each set containing 5 values. As shown in Figure 1(a),
each value in the two data sets is randomly generated
from the same normal distribution �	�� �
.



2. We calculated the d-value for each pair of sets.

3. We then estimated the probability density value
�	�
 � ������Æ������Æ��


��Æ where Æ � �����. The value
is essentially the fraction of the FM d-values falling in
region �� � Æ� � � Æ� divided by the region length �Æ.
The probability density function of the d-distribution
was drawn in Figure 2.

4. Finally, in order to understand the effect of the number
of pairs used for simulation, i.e., the size of the dataset,
on the approximation error of the d-distribution, we
generated datasets with different data sizes. For each
data size, we generated 10 datasets, and thus derived
10 probability density functions. The maximum stan-
dard deviation for all d-values is recorded as the error
rate for that data size. As shown in Figure 3, the error
rate decreases as the size of the dataset increases.

From Figure 2, we can see that most FM d-values fall
into the range from 0.2 to 0.5, and very few fall into the
range greater than 0.6, or less than 0.2. In particular, when
� � ������, � � ����� � ����. This is reflected in the
red-shared area in Figure 2 with

� �




�
��

�	�
�� � ����.
Therefore, given two sets �� and �� drawn from the same
normal unit distribution, the chance that the pair has a FM
d-value equal to or greater than 0.6056 is very low. On the
other hand, if we observe that two sets have a d-value equal
to or greater than 0.6056, then there is a strong evidence that
these two sets are drawn from two different distributions,
and thus considered as significantly divergent.
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Figure 2. The probability density function of
FM d-value

Figure 3 shows the effect of data size on the error rate
of the derived probability density function. As the data size
increases, the error rate decreases. We can see from Figure
3 that, after the number of pairs of sets in a dataset is greater
than 8000, the trend of the error rate becomes stable. Thus,

to obtain a reliable empirical p-value for FM-test, the data
size should be greater than 8000.
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Figure 3. The impact of dataset size on error
rate of PDF of FM d-value
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Suppose two sets �� and �� are drawn from the same
normal distribution, then what is the probability that they
have a FM d-value equal to or greater than a particular �?
is the � increases, will this probability decrease? To answer
these questions, we studied the relationship between FM d-
value and empirical p-value as follows:
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Figure 4. The relationship between FM d-
value and empirical p-value

1. Based on the above experimental result, we know that
we need at least 8000 pairs of sets to obtain a reliable
empirical p-value. Therefore, in this experiment, we
generated 10000 pairs of sets of values, with each set
containing 5 values. Each value is randomly generated
from the unit normal distribution �	�� �
.

2. We calculated the d-value for each pair of sets.



3. For each pair of sets �� and �� with d-value �, we
calculated its empirical p-value as ��� ����� where
� is the number of pairs in these 10000 pairs that have
a d-value equal to or greater than �.

4. We drew the relationship between d-value and empiri-
cal p-value in Figure 4.

From Figure 4, we can see that as d-value increases, the
p-value decreases. In particular, when � � ������, we have
� � ����.
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Figure 5. Relationship between the mean dif-
ference of distributions and d-value
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Suppose two sets �� and �� are drawn from two dif-
ferent distributions, then a good divergence measurement
should satisfy the following property: the less overlap be-
tween these two distributions, the greater the d-value. We
validated that our FM-test has this property as follows:

1. As shown in Figure 1(b), two data sets are generated
from two distribution. Let �	�� �
 and �	�� �
 be two
normal distributions, where � is the mean difference
between these two distributions. In this experiment,
we consider � = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5,
respectively.

2. We generated 1000 pairs of sets of values, with the first
set containing 5 values that are randomly generated
from �	�� �
, and the second set containing 5 values
that are randomly generated from �	�� �
.

3. We calculated the d-value for each pair. Let the aver-
age of these 1000 d-values be �. We then plotted 	�� �

in Figure 5.

4. We repeated step 2 and 3 for different �. Finally, the
curve was drawn in Figure 5.

Figure 5 confirmed the desirable property of FM-test: the
larger the mean difference between the two distributions,
the greater the d-value.
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A dataset of microarray gene expression for a total of
10831 genes downloadable from [17] is used in this exper-
iment. For each gene, there are ten expression values, five
from a group of insulin-sensitive (IS) people and five from
a group of insulin-resistant (IR) people. Only the genes that
have no null expression values are included in this analysis.
We also require that, for a gene to be included, at least five
out of its ten expression values are greater than 100. This
eliminates the genes whose expression values are noisy and
not reliable.

The results of FM-test are compared with the results of t-
test and rank sum test. As we can seen in Table 2, although
the orders of ranking are different for different methods, all
three methods identify these genes as significantly differ-
entially expressed between the IS and IR groups. Further-
more, 10 worst ranked genes in FM-test shown in Table 2
are also consistent with the result of the other two meth-
ods. However, gene U49835 is identified by FM-test as the
21st ranked significant gene with p-value 0.0258, neither t-
test (with p-value 0.0768) nor rank sum test (with a p-value
0.1522) identifies this gene as significant.

To study the relevance of genes in insulin metabolism
and diabetes, the 10 best ranked differentially regulated
genes shown in Table 2 were further searched in pub-
lished literature. Human phosphatidylinositol (4,5)bispho-
sphate 5-phosphatase homolog (gene U45973) was found
to be differentially expressed in insulin resistance cases.
Over-expression of inositol polyphosphate 5-phosphatase-2
SHIP2 has been shown to inhibit insulin-stimulated phos-
phoinositide 3-kinase (PI3K) dependent signaling events.
Analysis of diabetic human subjects has revealed an asso-
ciation between SHIP2 gene polymorphism and type 2 di-
abetes mellitus. Also knockout mouse studies have shown
that SHIP2 is a significant therapeutic target for the treat-
ment of type-2 diabetes as well as obesity [6]. Cser-
mely et al. reported that insulin mediates phosphoryla-
tion/dephosphorylation of nucleolar protein nucleolin (gene
������) by stimulating casein kinase II, and this may
play a role in the simultaneous enhancement in RNA ef-
flux from isolated, intact cell nuclei [4]. c-myc is an onco-
gene that codes for transcription factor Myc that along with
other binding partners such as MAX plays an important
role widely studied in various physiological processes in-
cluding tumor growth in different cancers. Myc modulates
the expression of hepatic genes and counteracts the obesity
and insulin resistance induced by a high-fat diet in trans-



Table 2. Ten best-ranked and worst-ranked genes identified by FM-test
Empirical t-test rank sum

Probe Set Gene Description d-value p-value p-value p-value
U45973 Human phosphatidylinositol (4,5) bisphosphate 0.999 0.0003 0.0001 0.0076
M60858 Human nucleolin gene 0.935 0.0016 0.0017 0.0076
D85181 Homo sapiens mRNA for fungal sterol-C5-desaturase homolog 0.892 0.0028 0.0029 0.0147
M95610 Human alpha 2 type IX collagen (COL9A2) mRNA 0.872 0.0038 0.0066 0.0076
L07648 Human MXI1 mRNA 0.858 0.0043 0.0052 0.0076
L07033 Human hydroxymethylglutaryl-CoA lyase mRNA 0.855 0.0046 0.0054 0.0076
X53586 Human mRNA for integrin alpha 6 0.851 0.0047 0.0075 0.0076
X81003 Homo sapiens HCG V mRNA 0.791 0.0089 0.0077 0.0076
X57959 ribosomal protein L7 0.767 0.0108 0.0109 0.0313
U06452 melan-A 0.756 0.0126 0.0118 0.0311
X82324 POU domain, class 3, transcription factor 4 0.206 0.9987 0.407 1
M14764 nerve growth factor receptor (TNFR superfamily, member 16) 0.204 0.9989 0.652 1
M64673 heat shock transcription factor 1 0.204 0.9990 0.652 0.844
U20657 ubiquitin specific peptidase 4 (proto-oncogene) 0.197 0.9993 0.642 0.844
D17793 aldo-keto reductase family 1, member C3 0.196 0.9999 0.471 0.839
D78014 dihydropyrimidinase-like 3 0.194 1 0.620 0.548

AB002314 PDZ domain containing 10 0.191 1 0.367 0.545
L20348 oncomodulin 0.181 1 0.405 0.544
D50063 proteasome (prosome, macropain) 26S subunit 0.179 1 0.544 0.421

genic mice overexpressing c-myc in liver [3]. Max interac-
tor protein, MXI1 (gene L07648) competes for MAX thus
negatively regulates MYC function and may play a role
in insulin resistance. In the presence of glucose or glu-
cose and insulin, leucine is utilized more efficiently as a
precursor for lipid biosynthesis by adipose tissue. It has
been shown that during the differentiation of 3T3-L1 fi-
broblasts to adipocytes, the rate of lipid biosynthesis from
leucine increases at least 30-fold and the specific activity
of 3-hydroxy-3-methylglutaryl-CoA lyase (gene L07033),
the mitochondrial enzyme catalyzing the terminal reaction
in the leucine degradation pathway, increases 4-fold dur-
ing differentiation [7]. Schottelndreier et al. [12] have de-
scribed a regulatory role of integrin alpha 6 (gene !�
���)
in Ca2+ signaling, that is known to have a significant role in
insulin resistance [9]. HCGV gene product (gene !����
)
is known to inhibit the activity of protein phosphatase-1,
which is involved in diverse signaling pathways including
insulin signaling [18]. Human ribosomal protein L7 (Gene
X57959) plays a regulatory role in eukaryotic translation
apparatus. It has been shown to be an autoantigen in pa-
tients with systemic autoimmune diseases, such as systemic
lupus erythematosus [2]. Identification of this gene in our
analysis and by [17] suggests a possible role of this gene in
insulin resistance. Published reports on these genes indicate
their roles in insulin signaling and warrant further investi-
gations on their functions in insulin resistance cases. We
further recommend genes D85181, M95610 and U06452 as
candidate genes for future research in this area.
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Figure 6. The volcano plot for the diabetes
dataset

In order to compare the fold change of expression levels
between the IS and IR groups to the statistical significance
p-values, we presented all the genes in the diabetes dataset
with a volcano plot shown in Figure 6. The volcano plot
arranges the genes along dimensions of biological and sta-
tistical significance. The X axis is the fold change between
the two groups, which is on a log scale �"#�	 �$� �$%
, where
�$� is the mean of expressions in the IS group, and �$% is the



mean of the expressions in the IR group. In this way, up
and down regulation appear symmetric. The Y axis repre-
sents the p-value for our FM-test, which is on a negative log
scale ��"#�
	� � �����
, so that smaller p-values appear
higher up. The X axis indicates biological impact of the
change; the Y axis indicates the statistical evidence, or reli-
ability of the change. As shown in Figure 6, gene �����

is identified by FM-test as the most statistically significant
gene and it is over-expressed in the IR group; gene !�
���
is identified by FM-test as the 7th statistically significant
gene and it is over-expressed in the IS group. Although
genes ������, ������, ������, &�����, &���

, and
!����
 have been identified by FM-test among the top
ten significant genes, they are not overexpressed in either
groups. Finally, gene ������ is identified by FM-test as
the 11th significant gene and it is over-expressed in the IS
group.

In summary, out of the top 10 genes identified by FM-
test, we could find 6 of them in published literature about
their association with insulin metabolism and diabetes.
Among the remaining four genes, gene !����� has been
recommended by [17] as a candidate gene for diabetes, we
recommend that gene ������,������ and ������ could
serve as candidate genes for future research in this area.

5 Conclusions and Future Work

We proposed an innovative approach based on the fuzzy
set theory, FM-test, that quantifies the divergence of two
sets directly. We have validated FM-test on synthetic
datasets and show that it is effective and robust. We also
applied FM-test to a real diabetes dataset and identified 10
significant genes. While six of them have been confirmed
to be associated with insulin signaling and/or diabetes in
the literature, one has been recommended by others, the re-
maining three genes, ������, ������ and ������, are
suggested as three potential diabetes genes involved in in-
sulin resistance for further biological investigation. Further
investigation is needed to identify the properties of distribu-
tion of FM d-value and the equation to calculate its p-value.
FM-test will soon be freely available at website http:
//database.cs.wayne.edu/bioinformatics.
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