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Abstract
Background: Gene pathway can be defined as a group of genes that interact with each other to
perform some biological processes. Along with the efforts to identify the individual genes that play
vital roles in a particular disease, there is a growing interest in identifying the roles of gene pathways
in such diseases.

Results: This paper proposes an innovative fuzzy-set-theory-based approach, Multi-dimensional
Cluster Misclassification test (MCM-test), to measure the significance of gene pathways in a
particular disease. Experiments have been conducted on both synthetic data and real world data.
Results on published diabetes gene expression dataset and a list of predefined pathways from
KEGG identified OXPHOS pathway involved in oxidative phosphorylation in mitochondria and
other mitochondrial related pathways to be deregulated in diabetes patients. Our results support
the previously supported notion that mitochondrial dysfunction is an important event in insulin
resistance and type-2 diabetes.

Conclusion: Our experiments results suggest that MCM-test can be successfully used in pathway
level differential analysis of gene expression datasets. This approach also provides a new solution
to the general problem of measuring the difference between two groups of data, which is one of
the most essential problems in most areas of research.

Background
Current microarray technologies conduct simultaneous
studies of gene expression data of thousands of genes
under different conditions. In most of these studies,
expression data are analyzed using various standard statis-
tical methods to identify a list of genes responsible for a

particular condition. However, in these approaches, inter-
play among genes is not taken into account. Since organ-
isms behave as complex systems, functioning through
chemical networks and interaction of various molecules
(also known as pathways), this interplay of genes may
provide invaluable insight to the understanding of various
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diseases. Thus, along with the efforts to identify the indi-
vidual genes that play vital roles in a particular disease,
there is a growing interest in identifying the roles of differ-
ent pathways in such diseases.

Biological pathway is a group of related genes coding for
proteins that interact with each other to perform some
biological processes. According to the biological processes
they are involved with, pathways can be divided into sev-
eral categories, such as metabolic pathways and regulatory
pathways. Metabolic pathways are series of chemical reac-
tions occurring within a cell, catalyzed by enzymes, result-
ing in either the formation of a metabolic product to be
used or stored by the cell, or the initiation of another met-
abolic pathway. Regulatory pathways represent protein-
protein interactions.

During the past few years, many signaling and metabolic
pathways have been discovered experimentally and have
been integrated into pathway databases, such as KEGG [1]
and Biocarta [2]. Various statistical techniques have been
developed to analyze microarray expression data for the
relevance of predefined pathways to a particular disease.
These techniques include gene set enrichment analysis
[3,4], pathway level analysis of gene expression using sin-
gular value decomposition by Tomfohr et al. [5], and
hypothesis testing [6] by Tian et al. These approaches are
reviewed in detail in the related works section.

Generally speaking, these approaches can be divided into
two categories:

• Conduct statistical differential analysis at the individual
gene level, and integrate the result statistics of the genes in
the same pathway;

• Obtain activity level indices of each pathway for differ-
ent sample groups and conduct differential analysis of
these indices.

For the first category, when the statistics at individual gene
level miss significant genes, the effectiveness of the path-
way analysis will be affected. An example is given in the
later part of this section. For the second approach, extract-
ing pathway activity level indices from gene expression
data may cause loss of information.

Diabetes is a group of diseases characterized by high levels
of blood glucose resulting from defects in insulin produc-
tion, insulin action, or both. It is one of the most common
diseases, affecting 18.2 million people in the United
States, or 6.3% of the population [7]. Hence, identifying
active pathways in diabetes is a critical task for under-
standing this disease. Several pathway analysis works have
been proposed in this area [3,5,6].

In gene set enrichment analysis (GSEA) [3], a differential
statistic is calculated first for each gene from their expres-
sion data of two different groups of samples. Then the
genes are ordered according to the statistic values. A run-
ning sum of weights is calculated from the ordered list for
a particular pathway. The maximum value of this running
sum is called the enrichment score of that pathway. To
measure the significance of this score, a null distribution
of enrichment scores is generated by permuting the sam-
ple labels. This approach falls into the first category stated
previously, i.e., statistical analysis at individual gene level
is performed followed by an integration of these statistics
of genes in the same pathway.

In [5], a hypothesis testing framework for pathway differ-
ential analysis is proposed. T-test and Wilcoxon rank test
are recommended to measure the difference of expres-
sions of a single gene between two groups of samples.
Then this statistic is accumulated over each gene in a par-
ticular pathway and standardized by the total number of
genes in this pathway. The significance of the result is then
interpreted by rejecting two null hypotheses, each with a
null population generated by permuting sample labels or
gene indices. This approach also belongs to the first cate-
gory above. Statistical analysis at individual gene level is
still required for the pathway analysis in this approach.

In [6], singular value decomposition is used to obtain
pathway activity levels from the gene expression matrix. T-
test is applied to the pathway activity levels of the two dif-
ferent sample groups to measure the difference. Signifi-
cance of the measurement is also obtained by permuting
the sample labels. In this approach, no differential analy-
sis at individual gene level is required. However, an extrac-
tion of pathway activity level prior to the differential
analysis is required. During this extraction process, since
only the first eigenvector of singular value decomposition
is used, some information of expressions is lost. This
approach belongs to the second category stated above.

As discussed above, either t-test or rank sum test is used as
a core step by [3,6] to identify individual genes which are
expressed differently from two different sample groups.
Thus these methods inevitably inherit the disadvantage of
t-test and rank sum test. While the t-test is very sensitive to
extreme values and cannot distinguish two sets with close
means even though the two sets are significantly different
from each others, the rank sum test is not sensitive to
absolute values. In turn, those pathways contain genes
which can not be identified by t-test or rank sum test but
actually are significantly differently expressed in two dif-
ferent sample groups will be affected. For example, as
showed in Table 1, the expressions of Gene 3 are signifi-
cantly different under two conditions. However this gene
was not identified by t-test. Thus, a pathway involving this
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gene is less likely to be identified by the first category of
analysis that uses t-test at the gene level.

In this paper, we propose an innovative fuzzy-set-theory-
based approach for differential analysis of gene pathways
and apply it on identifying significant pathways for diabe-
tes. In our proposed MCM-test, instead of identifying
individual genes first, the differential analysis is done
directly at the pathway level without individual gene dif-
ferential statistic. All expression values of genes which
belong to a pathway of a particular patient are treated as a
vector. The intuition behind this is based on the fact that
genes for each patient interplay with each other. MCM-
test does not extract activity level of pathways either. This
allows keeping the maximum amount of information for
the pathway differential analysis. Moreover, the fuzzy
concept makes the approach more tolerant to individual
data item noise.

Results
To investigate our approach, we conducted experiments
on both synthetic data and real world data. We first con-
ducted a series of experiments on synthetic datasets to
find the characteristics of MCM d-value. We then used the
MCM-test on the real world diabetes dataset analyzed by
Tomfohr et al. [5] and GSEA [3]. Results on real world dia-
betes data identified several pathways that were deregu-
lated in diabetes patients. The top three pathways
identified were related to mitochondrial functions in
accordance with previous diabetes studies. Mitochondrial
dysfunction is known to be related to insulin resistance
and type-2 diabetes. Our data suggests that the method
can be successfully used in pathway level differential anal-
ysis of gene expression datasets.

Relationship between MCM d-value and mean difference 
of the distributions
Suppose two sets S1 and S2 are drawn from two different
distributions, then a good divergence value will satisfy the
following property: the less the overlap, the higher the d-
value. To validate that our MCM-test has this property, we
performed the following steps:

1. generated 17 values from Gaussian distribution N (μ,
σ), where μ is the mean and σ is the variance, to use as
gene expression data. The number 17 was chosen to
mimic the real world diabetes dataset used for the analysis
in this paper.

2. repeated Step 1 for 100 times to get expression data of
100 genes

3. generated 17 values from Gaussian distribution N (μ +
x, σ), with x = 0 at this time.

4. repeated Step 3 for 100 times

5. analyzed these 100 pairs of sets of values with MCM-
test and obtained the d-value.

6. repeated Step 1 to Step 5 for 1000 times and averaged
the d-values over all the iterations.

7. repeated Step 1 to Step 6 for each x: x = 0, 20, 40, 60,
80, 100, 120, 140, 160, and 180.

Figure 1 shows the average d-value verses mean difference.
We can see that the MCM-test has the desired property: the

Relationship between d-value and mean differenceFigure 1
Relationship between d-value and mean difference. 
Two datasets are generated from two distributions N (μ, σ) 
and N (μ + x, σ). As the mean difference, x, increases, the d-
value also increases.

Table 1: An example of five gene pathway

Gene ID S1 S2 CM d-value P-value

CM-test t-test Rank Sum test

1 750 559 649 685 636 310 359 135 97 178 1 0.001 0.000 0.008
2 391 379 268 323 380 774 506 416 468 449 1 0.005 0.029 0.008
3 598 424 695 451 141 342 260 266 229 234 0.904 0.018 0.077 0.152
4 233 216 193 394 327 436 980 363 424 416 0.905 0.017 0.071 0.015
5 305 221 241 183 158 201 176 189 177 250 0.812 0.143 0.448 0.693
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larger the mean difference between two sets, the larger the
divergence d-value.

Impact of population size on standard deviation of MCM 
d-value
At this point, a natural question is, what the standard
deviation of MCM d-values look like and how population
size of d-value influences it. To answer these questions, we
generated sample expression datasets and calculate d-val-
ues following a process similar to step 1 to 5 in the previ-
ous section. Again, we fixed the pathway length to 100.
We repeat the process and obtained 500 d-values and cal-
culated the standard deviation of the d-values. This is then
repeated for 10 times and the 10 standard deviations are
averaged and recorded as error rate of MCM d-value for
that population size 500. Similarly we obtained the error
rate for various d-value population sizes. As shown in Fig-
ure 2, the error rate decreases as the dataset size increases.
We also note that the error rate becomes stable after the
size of the population becomes greater than 8000.

Relationship between MCM d-value and empirical p-value
Suppose two vectors S1 and S2 are drawn from same Nor-
mal distribution. What is the probability that the MCM d-
value of these vectors is greater than a particular D? Does
the probability increases with the increase of D? To
answer these questions, we studied the relationship
between MCM d-value and empirical p-value as follows:

1. We generated 15000 pairs of sets, each set with 15 val-
ues from standard normal distribution.

2. From these 15000 pairs of sets, we randomly selected
100 pairs of sets to simulate expression data of a pathway
with 100 genes under two conditions. We calculated d-
value for this pathway. Since we know that the data size
required to obtain stable standard deviation of d-value is
8000 from the previous experiment, this process is
repeated 10000 times.

3. For each pathway generated above with d-value D, we
calculated the empirical p-value as n+1/10001, where n is
the number of d-values generated above that are equal to
or greater than D. The relationship between the d-value
and p-value is shown in Figure 3.

In Figure 3 we can see that as the d-value increases, the p-
value decreases. In particular, when d-value is greater than
0.809, we have p-value ≤ 0.05.

Impact of number of samples on error rate of MCM-test d-
value
In order to understand the effect of the number of samples
on error rate of MCM d-value, we generated datasets with
different sample sizes. For each sample size, we generated
10000 datasets and calculated the corresponding 10000
d-values. The standard deviation of these d-values was cal-
culated. This process is repeated 10 times and the average
of the standard deviations is recorded as the error rate. The
same is done for the other sample sizes. The relationship
between number of samples and the error rate is shown in

Relationship between MCM d-value and its empirical p-valueFigure 3
Relationship between MCM d-value and its empirical 
p-value. As the d-value increases, the corresponding empiri-
cal p-value decreases.

Impact of number of permutation on the error rate of PDF of MCM d-valueFigure 2
Impact of number of permutation on the error rate 
of PDF of MCM d-value. We show the error rate for var-
ious numbers of permutations ranging from 500 to 32000. 
The error rate decreases as the number of permutations 
increases.
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Figure 4. As expected, the error rate decreases as the
number of samples increases.

Analyzing the diabetes dataset with MCM-test
The diabetes dataset contains the transcriptional profiles
of smooth muscle biopsies of diabetic and normal indi-
viduals. In the expression dataset, for each gene, there are
17 expression values from subjects with type 2 diabetes
(DM2), 17 expression values from subjects with normal
glucose tolerance (NGT) and 10 expression values from
subjects with impaired glucose tolerance (IGT). For our
analysis, we only used the 34 expression values from sub-
jects with type 2 diabetes and subjects with normal glu-
cose tolerance. Furthermore, we used about 150 pathways
obtained from KEGG (Kyoto Encyclopedia of Genes and
Genomes) [1].

The expression values in the dataset which are too small,
i.e., less than 100 are considered to be the result of noise.
So, to minimize the effect of these low values, we only
included the genes which have at least one of the expres-
sion values greater than 100. Out of the 22,283 genes in
the dataset, 10,983 met the filtering criteria. The d-value
for each pathway was calculated as described in the meth-
odology section before. The p-value for the pathway was
calculated using permutation test. We permuted the genes
1000 times, each time selecting the same number of genes
as that of the pathway under consideration. We then cal-
culated the d-value of each pathway obtained thus and the
p-value for the pathway was the fraction of times the d-
values of the pathways obtained by 1000 permutation
equaled or exceeded the original d-value.

The pathways are ordered in the ascending order of their
p-values. The significant pathways, i.e., the pathways with
p-value less than 0.05, are then ordered according to the
percentage of the genes in the pathway which were repre-
sented in the dataset. Table 2 shows the result after sort-
ing.

Using our method, we identified the deregulation of mito-
chondrial pathways in the dataset which is in accordance
with previous studies. The first cluster of genes involved
was from the mitochondrial OXPHOS pathway. The
OXPHOS pathway was well represented in the data with
93% of genes (106 out of 114) present in the dataset. Oxi-
dative phosphorylation in mitochondria provides energy
in the form of ATP generation. In muscle cells, mitochon-
drial dysfunction has been linked to insulin resistance and
type-2 diabetes [8-10]. The involvement of genes coded by
mitochondria in insulin resistance is also well known. The
depletion of cellular mitochondrial DNA has been shown
to cause insulin resistance in experimental model [11].
Reduced mitochondrial oxidative phosphorylation leads
to the accumulation of intracellular triglycerides resulting
in insulin resistance. The next 2 clusters, c20_U133 which
is a manually curated cluster of genes coregulated with
OXPHOS [3] and the mitochondrial gene cluster
human_mitoDB_6_2002 reinforce that muscle mito-
chondrial dysfunction is linked to type-2 diabetes.

Conclusion
In this paper, we propose an innovative fuzzy-set-theory-
based approach for differential analysis of gene pathways
and apply it on identifying significant pathways for diabe-
tes. Experiments have been conducted on both synthetic
datasets and real world dataset. Results on real world dia-
betes data identified several number of gene pathways. Of
note our top significant pathways were related to mito-
chondrial function which is well known to be involved in
insulin resistance and type-2 diabetes. This approach can
be used not only for pathway analysis of other diseases
but also for other domains. As measuring the difference of
two groups of data are essential to most of researches, our
approach provides a solution to this general and most crit-
ical problem.

Methods
In [12-14], we proposed two fuzzy-set-theory based meth-
ods, CM-test and FM-test, to identify the individual genes
that expressed significant differences under two condi-
tions. In this paper, we extended the cluster misclassifica-
tion concept to a multi-dimensional space and propose a
new approach for pathway analysis, Multi-dimensional
Cluster Misclassification test (MCM-test). Comparing
with CM-test and FM-test, MCM-test looks for a group of
genes significant under two conditions instead of identify-
ing significant individual genes under two conditions. In

Impact of number of samples on error rate of PDF of MCM-test d-valueFigure 4
Impact of number of samples on error rate of PDF of 
MCM-test d-value. As the number of samples in a pathway 
increases, the error rate of PDF of MCM d-value also 
decreases.
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this approach, the expression values of a group of Q genes
for a particular sample under a particular condition are
considered as a Q-dimension vector. The differential anal-
ysis is done at the vector level, without individual gene
differential statistic.

In this section, we first introduce the concept of fuzzy
membership function of vectors, then the details of MCM-
test.

Fuzzy membership Function of Vectors
In fuzzy set theory, the degree for one variable to belong
to a fuzzy set is defined by a function. For a vector which
has two dimensions, the degree that it belongs to a set of
vectors can be defined by a three-dimensional function,
with the third dimension being the measurement of the
membership. Figure 5 shows a sample fuzzy membership
function for a vector (x, y).

For vectors with n dimensions, their fuzzy membership
function will be n+1-dimensional, with one dimension
measuring the fuzzy membership.

Our approach
Consider a pathway that consists of Q genes, the problem
now is to determine how these Q genes are expressed dif-
ferently under two conditions. To answer this question,
we consider the expression values of the Q genes for a par-
ticular sample under a particular condition as a Q-dimen-
sion vector. Then the expression values of a pathway
under one condition j can be modeled as set Sj (j = 1, 2) of
points in a Q-dimension space. The idea is to consider the
two sets of points S1 and S2 as samples from two different
fuzzy sets. We then examine the membership value of
each element with respect to these two fuzzy sets and
determine the d-value between the two sets of samples.

The mean  of the expression values of set Sj is:

where,

Nj is the number of samples in Sj,  is vector made by the

expression values of the n-th sample under condition j.

We then characterize set Sj (j = 1, 2) by a fuzzy set FSj (j =
1, 2) whose fuzzy membership function is defined as:

where,

Given an element  in S1, we calculate its element mis-

classification degree with respect to FS2 as

We denote the misclassified elements in S1 with respect to

FS2 as MFS2(S1) = { |  ∈ S1  m ( , FS2) > 0}. Similarly,

we denote the misclassified elements in S2 with respect to

FS1 as MFS1 (S2) = { |∈ S2  m ( , FS1) > 0}. We denote the

number of misclassified elements in S1 and S2 with respect

to each other as # M (S1, S2 = |MFS2 (S1)| + |MFS1 (S2)|. We

then define the convergence degree (c-value) of S1 and S2

as a linear interpolation of the number of misclassified
elements and the mutual misclassification degrees as fol-
lows.

c(S1, S2) = β*T1 + (1-β) * T2 (5)
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Table 2: The results from MCM-test on diabetes dataset

Pathway Name MCM-test p-value No. of genes hits in dataset Actual no. of genes in pathway Percentage of gene hits

OXPHOS 0.04995 106 114 92.98
c20 U133 probes 0.013 215 270 79.62
human mitoDB 0.029 436 594 73.4

c33 U133 probes 0.021 245 362 67.67
MAP00252 0.022 23 35 65.71
c34 U133 0.012 274 452 60.62
c21 U133 0.026 166 287 57.84
c8 U133 0.013 164 288 56.94
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where,

and

Then, the divergence between S1 and S2 can be calculated
using the following:

d(S1, S2) = 1-c(S1, S2) (8)

In our method, to negate the effect of outliers, we used α-
trimmed mean instead of normal mean. The α-trimmed
mean is calculated by ordering the sample under consid-
eration and taking away the smallest and largest α values
from the ordered sample. The mean of the remaining val-
ues in the sample is α-trimmed mean of the sample. For
instance, if we have a sample of (3, 17, 25, 29, 23, 53, 22,
31, 45, 81, 90, 1), the 2-trimmed mean is calculated by
removing the smallest two values (1, 3), and largest two
values (81, 90) from the sample set. The mean of the
remaining values (30.625) becomes the 2-trimmed mean
of the sample.

For computational simplicity, an Epanechnikov function
shown as following can be used instead of the Gaussian
function of equation (2):

where,

Analysis of method
One dimension: a special case
In this section we analyze MCM-test for it theoretical jus-
tification. For the sake of clarity, we start with one dimen-
sion, the simplest and special case of multi-dimension.
The one dimensional MCM-test corresponds to differen-
tial analysis of a single gene.

In Figure 6, two distributions, D1 and D2 are displayed in
blue and red respectively, with mean μ1 = 600 and stand-
ard deviation σ1 = 50 for D1 and μ2 = 700, σ2 = 100 for D2.
The visualization tells us that they are different as they
cover different areas and have different shapes. The CM-
test, which can be considered as a special case of the
MCM-test differentiate them by measuring the differences
on the Y axis, which is a combined result of the location
difference together with the difference of the variances.

MCM-test uses the probability distribution functions of
these two distributions as their fuzzy membership func-
tions respectively, and takes advantage of the membership
differences of "misclassified" samples. As shown in Figure
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One dimension Gaussian distributions, μ1 = 600, μ2 = 700, σ1 = 50, σ2 = 100Figure 6
One dimension Gaussian distributions, μ1 = 600, μ2 = 700, 
σ1 = 50, σ2 = 100.

A sample fuzzy membership function of vector (x, y)Figure 5
A sample fuzzy membership function of vector (x, y).
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6, a sample x1 of D2 has a higher degree of belonging to D1,
thus is "misclassified" in MCM-test. This misclassification
degree is aggregated with all the other "misclassified"
samples of D2 that are misclassified. Similarly, x2 of D1 has
a higher degree for D2, thus is also misclassified. This mis-
classification degree is also aggregated with all the other
misclassified samples of D1.

MCM-test collects all the misclassified degrees and the
number of misclassified samples and form them into an
index to measure the divergence of these two distributes.
With the mean difference between these two distributions
increases, the number of misclassified samples, as well as
the aggregated misclassification degree decreases. Thus
the MCM d-value will decrease.

Two and higher dimensions
Figure 7(a) illustrates samples of two distributions, each
of which is a 2-D Gaussian function. In pathway analysis,
the X and Y axis can be the expression data of two individ-
ual genes respectively. Figure 7(b) shows the probability
density functions of these two distributions, which can be
used as their fuzzy membership functions after multiply-
ing a constant.

Distributions of higher dimensions are hard to visualize.
But the idea of the misclassification test stays the same. In
multi-dimension space, each sample is a vector. And their
misclassification degrees are used to measure the diver-
gence of their distributions.
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